Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incidence geometry in the projective plane via almost-principal minors of symmetric matrices (2103.02589v1)

Published 3 Mar 2021 in math.ST, cs.CC, and stat.TH

Abstract: We present an encoding of a polynomial system into vanishing and non-vanishing constraints on almost-principal minors of a symmetric, principally regular matrix, such that the solvability of the system over some field is equivalent to the satisfiability of the constraints over that field. This implies two complexity results about Gaussian conditional independence structures. First, all real algebraic numbers are necessary to construct inhabitants of non-empty Gaussian statistical models defined by conditional independence and dependence constraints. This gives a negative answer to a question of Petr \v{S}ime\v{c}ek. Second, we prove that the implication problem for Gaussian CI is polynomial-time equivalent to the existential theory of the reals.

Citations (2)

Summary

We haven't generated a summary for this paper yet.