Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Cutting Planes for Data-Driven Optimization (2103.02506v1)

Published 3 Mar 2021 in math.OC, stat.CO, and stat.ML

Abstract: We introduce a stochastic version of the cutting-plane method for a large class of data-driven Mixed-Integer Nonlinear Optimization (MINLO) problems. We show that under very weak assumptions the stochastic algorithm is able to converge to an $\epsilon$-optimal solution with high probability. Numerical experiments on several problems show that stochastic cutting planes is able to deliver a multiple order-of-magnitude speedup compared to the standard cutting-plane method. We further experimentally explore the lower limits of sampling for stochastic cutting planes and show that for many problems, a sampling size of $O(\sqrt[3]{n})$ appears to be sufficient for high quality solutions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.