Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Fusion Module Evolves Drivable Area and Road Anomaly Detection: A Benchmark and Algorithms (2103.02433v2)

Published 3 Mar 2021 in cs.CV and cs.RO

Abstract: Joint detection of drivable areas and road anomalies is very important for mobile robots. Recently, many semantic segmentation approaches based on convolutional neural networks (CNNs) have been proposed for pixel-wise drivable area and road anomaly detection. In addition, some benchmark datasets, such as KITTI and Cityscapes, have been widely used. However, the existing benchmarks are mostly designed for self-driving cars. There lacks a benchmark for ground mobile robots, such as robotic wheelchairs. Therefore, in this paper, we first build a drivable area and road anomaly detection benchmark for ground mobile robots, evaluating the existing state-of-the-art single-modal and data-fusion semantic segmentation CNNs using six modalities of visual features. Furthermore, we propose a novel module, referred to as the dynamic fusion module (DFM), which can be easily deployed in existing data-fusion networks to fuse different types of visual features effectively and efficiently. The experimental results show that the transformed disparity image is the most informative visual feature and the proposed DFM-RTFNet outperforms the state-of-the-arts. Additionally, our DFM-RTFNet achieves competitive performance on the KITTI road benchmark. Our benchmark is publicly available at https://sites.google.com/view/gmrb.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Hengli Wang (23 papers)
  2. Rui Fan (113 papers)
  3. Yuxiang Sun (39 papers)
  4. Ming Liu (421 papers)
Citations (65)

Summary

We haven't generated a summary for this paper yet.