Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RBF approximation of three dimensional PDEs using Tensor Krylov subspace methods (2103.02423v1)

Published 3 Mar 2021 in math.NA and cs.NA

Abstract: In this paper, we propose different algorithms for the solution of a tensor linear discrete ill-posed problem arising in the application of the meshless method for solving PDEs in three-dimensional space using multiquadric radial basis functions. It is well known that the truncated singular value decomposition (TSVD) is the most common effective solver for ill-conditioned systems, but unfortunately the operation count for solving a linear system with the TSVD is computationally expensive for large-scale matrices. In the present work, we propose algorithms based on the use of the well known Einstein product for two tensors to define the tensor global Arnoldi and the tensor Gloub Kahan bidiagonalization algorithms. Using the so-called Tikhonov regularization technique, we will be able to provide computable approximate regularized solutions in a few iterations.

Citations (3)

Summary

We haven't generated a summary for this paper yet.