Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Should multilevel methods for discontinuous Galerkin discretizations use discontinuous interpolation operators? (2103.02112v1)

Published 3 Mar 2021 in math.NA and cs.NA

Abstract: Multi-level preconditioners for Discontinuous Galerkin (DG) discretizations are widely used to solve elliptic equations, and a main ingredient of such solvers is the interpolation operator to transfer information from the coarse to the fine grid. Classical interpolation operators give continuous interpolated values, but since DG solutions are naturally discontinuous, one might wonder if one should not use discontinuous interpolation operators for DG discretizations. We consider a discontinuous interpolation operator with a parameter that controls the discontinuity, and determine the optimal choice for the discontinuity, leading to the fastest solver for a specific 1D symmetric interior penalty DG discretization model problem. We show in addition that our optimization delivers a perfectly clustered spectrum with a high geometric multiplicity, which is very advantageous for a Krylov solver using the method as its preconditioner. Finally, we show the applicability of the optimal choice to higher dimensions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.