Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Projection-tree reduced order modeling for fast N-body computations (2103.01983v2)

Published 2 Mar 2021 in cs.CE

Abstract: This work presents a data-driven reduced-order modeling framework to accelerate the computations of $N$-body dynamical systems and their pair-wise interactions. The proposed framework differs from traditional acceleration methods, like the Barnes-Hut method, which requires online tree building of the state space, or the fast-multipole method, which requires rigorous $a$ $priori$ analysis of governing kernels and online tree building. Our approach combines Barnes-Hut hierarchical decomposition, dimensional compression via the least-squares Petrov-Galerkin (LSPG) projection, and hyper-reduction by way of the Gauss-Newton with approximated tensor (GNAT) approach. The resulting $projection-tree$ reduced order model (PTROM) enables a drastic reduction in operational count complexity by constructing sparse hyper-reduced pairwise interactions of the $N$-body dynamical system. As a result, the presented framework is capable of achieving an operational count complexity that is independent of $N$, the number of bodies in the numerical domain. Capabilities of the PTROM method are demonstrated on the two-dimensional fluid-dynamic Biot-Savart kernel within a parametric and reproductive setting. Results show the PTROM is capable of achieving over 2000$\times$ wall-time speed-up with respect to the full-order model, where the speed-up increases with $N$. The resulting solution delivers quantities of interest with errors that are less than 0.1$\%$ with respect to full-order model.

Citations (5)

Summary

We haven't generated a summary for this paper yet.