Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

IdentityDP: Differential Private Identification Protection for Face Images (2103.01745v1)

Published 2 Mar 2021 in cs.CV

Abstract: Because of the explosive growth of face photos as well as their widespread dissemination and easy accessibility in social media, the security and privacy of personal identity information becomes an unprecedented challenge. Meanwhile, the convenience brought by advanced identity-agnostic computer vision technologies is attractive. Therefore, it is important to use face images while taking careful consideration in protecting people's identities. Given a face image, face de-identification, also known as face anonymization, refers to generating another image with similar appearance and the same background, while the real identity is hidden. Although extensive efforts have been made, existing face de-identification techniques are either insufficient in photo-reality or incapable of well-balancing privacy and utility. In this paper, we focus on tackling these challenges to improve face de-identification. We propose IdentityDP, a face anonymization framework that combines a data-driven deep neural network with a differential privacy (DP) mechanism. This framework encompasses three stages: facial representations disentanglement, $\epsilon$-IdentityDP perturbation and image reconstruction. Our model can effectively obfuscate the identity-related information of faces, preserve significant visual similarity, and generate high-quality images that can be used for identity-agnostic computer vision tasks, such as detection, tracking, etc. Different from the previous methods, we can adjust the balance of privacy and utility through the privacy budget according to pratical demands and provide a diversity of results without pre-annotations. Extensive experiments demonstrate the effectiveness and generalization ability of our proposed anonymization framework.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yunqian Wen (1 paper)
  2. Li Song (72 papers)
  3. Bo Liu (485 papers)
  4. Ming Ding (219 papers)
  5. Rong Xie (24 papers)
Citations (56)

Summary

We haven't generated a summary for this paper yet.