Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable communication for high-order stencil computations using CUDA-aware MPI (2103.01597v2)

Published 2 Mar 2021 in cs.DC, physics.comp-ph, and physics.flu-dyn

Abstract: Modern compute nodes in high-performance computing provide a tremendous level of parallelism and processing power. However, as arithmetic performance has been observed to increase at a faster rate relative to memory and network bandwidths, optimizing data movement has become critical for achieving strong scaling in many communication-heavy applications. This performance gap has been further accentuated with the introduction of graphics processing units, which can provide by multiple factors higher throughput in data-parallel tasks than central processing units. In this work, we explore the computational aspects of iterative stencil loops and implement a generic communication scheme using CUDA-aware MPI, which we use to accelerate magnetohydrodynamics simulations based on high-order finite differences and third-order Runge-Kutta integration. We put particular focus on improving intra-node locality of workloads. Our GPU implementation scales strongly from one to $64$ devices at $50\%$--$87\%$ of the expected efficiency based on a theoretical performance model. Compared with a multi-core CPU solver, our implementation exhibits $20$--$60\times$ speedup and $9$--$12\times$ improved energy efficiency in compute-bound benchmarks on $16$ nodes.

Citations (11)

Summary

We haven't generated a summary for this paper yet.