Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Communication-Computation Trade-Off in Heterogeneous Gradient Coding (2103.01589v1)

Published 2 Mar 2021 in cs.IT, cs.LG, and math.IT

Abstract: Gradient coding allows a master node to derive the aggregate of the partial gradients, calculated by some worker nodes over the local data sets, with minimum communication cost, and in the presence of stragglers. In this paper, for gradient coding with linear encoding, we characterize the optimum communication cost for heterogeneous distributed systems with \emph{arbitrary} data placement, with $s \in \mathbb{N}$ stragglers and $a \in \mathbb{N}$ adversarial nodes. In particular, we show that the optimum communication cost, normalized by the size of the gradient vectors, is equal to $(r-s-2a){-1}$, where $r \in \mathbb{N}$ is the minimum number that a data partition is replicated. In other words, the communication cost is determined by the data partition with the minimum replication, irrespective of the structure of the placement. The proposed achievable scheme also allows us to target the computation of a polynomial function of the aggregated gradient matrix. It also allows us to borrow some ideas from approximation computing and propose an approximate gradient coding scheme for the cases when the repetition in data placement is smaller than what is needed to meet the restriction imposed on communication cost or when the number of stragglers appears to be more than the presumed value in the system design.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (6)

Summary

We haven't generated a summary for this paper yet.