Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross Modal Focal Loss for RGBD Face Anti-Spoofing (2103.00948v1)

Published 1 Mar 2021 in cs.CV, cs.CR, and cs.LG

Abstract: Automatic methods for detecting presentation attacks are essential to ensure the reliable use of facial recognition technology. Most of the methods available in the literature for presentation attack detection (PAD) fails in generalizing to unseen attacks. In recent years, multi-channel methods have been proposed to improve the robustness of PAD systems. Often, only a limited amount of data is available for additional channels, which limits the effectiveness of these methods. In this work, we present a new framework for PAD that uses RGB and depth channels together with a novel loss function. The new architecture uses complementary information from the two modalities while reducing the impact of overfitting. Essentially, a cross-modal focal loss function is proposed to modulate the loss contribution of each channel as a function of the confidence of individual channels. Extensive evaluations in two publicly available datasets demonstrate the effectiveness of the proposed approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Anjith George (41 papers)
  2. Sebastien Marcel (77 papers)
Citations (74)

Summary

We haven't generated a summary for this paper yet.