Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An introduction to finite element methods for inverse coefficient problems in elliptic PDEs (2103.00888v2)

Published 1 Mar 2021 in math.NA, cs.NA, and math.AP

Abstract: Several novel imaging and non-destructive testing technologies are based on reconstructing the spatially dependent coefficient in an elliptic partial differential equation from measurements of its solution(s). In practical applications, the unknown coefficient is often assumed to be piecewise constant on a given pixel partition (corresponding to the desired resolution), and only finitely many measurements can be made. This leads to the problem of inverting a finite-dimensional non-linear forward operator $\mathcal F:\ \mathcal D(\mathcal F)\subseteq \mathbb Rn\to \mathbb Rm$, where evaluating $\mathcal F$ requires one or several PDE solutions. Numerical inversion methods require the implementation of this forward operator and its Jacobian. We show how to efficiently implement both using a standard FEM package and prove convergence of the FEM approximations against their true-solution counterparts. We present simple example codes for Comsol with the Matlab Livelink package, and numerically demonstrate the challenges that arise from non-uniqueness, non-linearity and instability issues. We also discuss monotonicity and convexity properties of the forward operator that arise for symmetric measurement settings.

Citations (16)

Summary

We haven't generated a summary for this paper yet.