Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FPS-Net: A Convolutional Fusion Network for Large-Scale LiDAR Point Cloud Segmentation (2103.00738v1)

Published 1 Mar 2021 in cs.CV and cs.AI

Abstract: Scene understanding based on LiDAR point cloud is an essential task for autonomous cars to drive safely, which often employs spherical projection to map 3D point cloud into multi-channel 2D images for semantic segmentation. Most existing methods simply stack different point attributes/modalities (e.g. coordinates, intensity, depth, etc.) as image channels to increase information capacity, but ignore distinct characteristics of point attributes in different image channels. We design FPS-Net, a convolutional fusion network that exploits the uniqueness and discrepancy among the projected image channels for optimal point cloud segmentation. FPS-Net adopts an encoder-decoder structure. Instead of simply stacking multiple channel images as a single input, we group them into different modalities to first learn modality-specific features separately and then map the learned features into a common high-dimensional feature space for pixel-level fusion and learning. Specifically, we design a residual dense block with multiple receptive fields as a building block in the encoder which preserves detailed information in each modality and learns hierarchical modality-specific and fused features effectively. In the FPS-Net decoder, we use a recurrent convolution block likewise to hierarchically decode fused features into output space for pixel-level classification. Extensive experiments conducted on two widely adopted point cloud datasets show that FPS-Net achieves superior semantic segmentation as compared with state-of-the-art projection-based methods. In addition, the proposed modality fusion idea is compatible with typical projection-based methods and can be incorporated into them with consistent performance improvements.

Citations (47)

Summary

We haven't generated a summary for this paper yet.