Papers
Topics
Authors
Recent
2000 character limit reached

Exploiting Attention-based Sequence-to-Sequence Architectures for Sound Event Localization

Published 28 Feb 2021 in cs.SD, cs.LG, and eess.AS | (2103.00417v1)

Abstract: Sound event localization frameworks based on deep neural networks have shown increased robustness with respect to reverberation and noise in comparison to classical parametric approaches. In particular, recurrent architectures that incorporate temporal context into the estimation process seem to be well-suited for this task. This paper proposes a novel approach to sound event localization by utilizing an attention-based sequence-to-sequence model. These types of models have been successfully applied to problems in natural language processing and automatic speech recognition. In this work, a multi-channel audio signal is encoded to a latent representation, which is subsequently decoded to a sequence of estimated directions-of-arrival. Herein, attentions allow for capturing temporal dependencies in the audio signal by focusing on specific frames that are relevant for estimating the activity and direction-of-arrival of sound events at the current time-step. The framework is evaluated on three publicly available datasets for sound event localization. It yields superior localization performance compared to state-of-the-art methods in both anechoic and reverberant conditions.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.