Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Minimax Probability Machine for Non-Decomposable Performance Measures (2103.00396v2)

Published 28 Feb 2021 in cs.LG and stat.ML

Abstract: Imbalanced classification tasks are widespread in many real-world applications. For such classification tasks, in comparison with the accuracy rate, it is usually much more appropriate to use non-decomposable performance measures such as the Area Under the receiver operating characteristic Curve (AUC) and the $F_\beta$ measure as the classification criterion since the label class is imbalanced. On the other hand, the minimax probability machine is a popular method for binary classification problems and aims at learning a linear classifier by maximizing the accuracy rate, which makes it unsuitable to deal with imbalanced classification tasks. The purpose of this paper is to develop a new minimax probability machine for the $F_\beta$ measure, called MPMF, which can be used to deal with imbalanced classification tasks. A brief discussion is also given on how to extend the MPMF model for several other non-decomposable performance measures listed in the paper. To solve the MPMF model effectively, we derive its equivalent form which can then be solved by an alternating descent method to learn a linear classifier. Further, the kernel trick is employed to derive a nonlinear MPMF model to learn a nonlinear classifier. Several experiments on real-world benchmark datasets demonstrate the effectiveness of our new model.

Citations (3)

Summary

We haven't generated a summary for this paper yet.