Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structure-Preserving Galerkin POD-DEIM Reduced-Order Modeling of Hamiltonian Systems (2103.00388v2)

Published 28 Feb 2021 in math.NA and cs.NA

Abstract: A structure preserving proper orthogonal decomposition reduce-order modeling approach has been developed in [Gong et al. 2017] for the Hamiltonian system, which uses the traditional framework of Galerkin projection-based model reduction but modifies the reduced order model so that the appropriate Hamiltonian structure is preserved. However, its computational complexity for online simulations is still high if the Hamiltonian involves non-polynomial nonlinearities. In this paper, we apply the discrete empirical interpolation method to improve the online efficiency of the structure-preserving reduced order simulations. Since the reduced basis truncation can degrade the Hamiltonian approximation, we propose to use the basis obtained from shifted snapshots. A nonlinear wave equation is used as a test bed and the numerical results illustrate the efficacy of the proposed method.

Citations (21)

Summary

We haven't generated a summary for this paper yet.