Structure-Preserving Galerkin POD-DEIM Reduced-Order Modeling of Hamiltonian Systems
Abstract: A structure preserving proper orthogonal decomposition reduce-order modeling approach has been developed in [Gong et al. 2017] for the Hamiltonian system, which uses the traditional framework of Galerkin projection-based model reduction but modifies the reduced order model so that the appropriate Hamiltonian structure is preserved. However, its computational complexity for online simulations is still high if the Hamiltonian involves non-polynomial nonlinearities. In this paper, we apply the discrete empirical interpolation method to improve the online efficiency of the structure-preserving reduced order simulations. Since the reduced basis truncation can degrade the Hamiltonian approximation, we propose to use the basis obtained from shifted snapshots. A nonlinear wave equation is used as a test bed and the numerical results illustrate the efficacy of the proposed method.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.