Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CP-MDP: A CANDECOMP-PARAFAC Decomposition Approach to Solve a Markov Decision Process Multidimensional Problem (2103.00331v1)

Published 27 Feb 2021 in cs.AI

Abstract: Markov Decision Process (MDP) is the underlying model for optimal planning for decision-theoretic agents in stochastic environments. Although much research focuses on solving MDP problems both in tabular form or using factored representations, none focused on tensor decomposition methods. Solving MDPs using tensor algebra offers the prospect of leveraging advances in tensor-based computations to further increase solver efficiency. In this paper, we develop an MDP solver for a multidimensional problem using a tensor decomposition method to compress the transition models and optimize the value iteration and policy iteration algorithms. We empirically evaluate our approach against tabular methods and show our approach can compute much larger problems using substantially less memory, opening up new possibilities for tensor-based approaches in stochastic planning

Citations (2)

Summary

We haven't generated a summary for this paper yet.