Affine equivalences of surfaces of translation and minimal surfaces, and applications to symmetry detection and design
Abstract: We introduce a characterization for affine equivalence of two surfaces of translation defined by either rational or meromorphic generators. In turn, this induces a similar characterization for minimal surfaces. In the rational case, our results provide algorithms for detecting affine equivalence of these surfaces, and therefore, in particular, the symmetries of a surface of translation or a minimal surface of the considered types. Additionally, we apply our results to designing surfaces of translation and minimal surfaces with symmetries, and to computing the symmetries of the higher-order Enneper surfaces.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.