Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Transmission Parameters Selection Algorithm for URLLC Traffic in Uplink (2102.13554v1)

Published 26 Feb 2021 in cs.NI and eess.SP

Abstract: Ultra-Reliable Low-Latency Communications (URLLC) is a novel feature of 5G cellular systems. To satisfy strict URLLC requirements for uplink data transmission, the specifications of 5G systems introduce the grant-free channel access method. According to this method, a User Equipment (UE) performs packet transmission without requesting channel resources from a base station (gNB). With the grant-free channel access, the gNB configures the uplink transmission parameters in a long-term time scale. Since the channel quality can significantly change in time and frequency domains, the gNB should select robust transmission parameters to satisfy the URLLC requirements. Many existing studies consider fixed robust uplink transmission parameter selection that allows satisfying the requirements even for UEs with poor channel conditions. However, the more robust transmission parameters are selected, the lower is the network capacity. In this paper, we propose an adaptive algorithm that selects the transmission parameters depending on the channel quality based on the signal-to-noise ratio statistics analysis at the gNB. Simulation results obtained with NS-3 show that the algorithm allows meeting the URLLC latency and reliability requirements while reducing the channel resource consumption more than twice in comparison with the fixed transmission parameters selection.

Citations (2)

Summary

We haven't generated a summary for this paper yet.