Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On regret bounds for continual single-index learning (2102.12961v2)

Published 25 Feb 2021 in stat.ML and cs.LG

Abstract: In this paper, we generalize the problem of single-index model to the context of continual learning in which a learner is challenged with a sequence of tasks one by one and the dataset of each task is revealed in an online fashion. We propose a randomized strategy that is able to learn a common single-index (meta-parameter) for all tasks and a specific link function for each task. The common single-index allows to transfer the information gained from the previous tasks to a new one. We provide a rigorous theoretical analysis of our proposed strategy by proving some regret bounds under different assumption on the loss function.

Summary

We haven't generated a summary for this paper yet.