Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sketching Curvature for Efficient Out-of-Distribution Detection for Deep Neural Networks (2102.12567v1)

Published 24 Feb 2021 in cs.LG

Abstract: In order to safely deploy Deep Neural Networks (DNNs) within the perception pipelines of real-time decision making systems, there is a need for safeguards that can detect out-of-training-distribution (OoD) inputs both efficiently and accurately. Building on recent work leveraging the local curvature of DNNs to reason about epistemic uncertainty, we propose Sketching Curvature of OoD Detection (SCOD), an architecture-agnostic framework for equipping any trained DNN with a task-relevant epistemic uncertainty estimate. Offline, given a trained model and its training data, SCOD employs tools from matrix sketching to tractably compute a low-rank approximation of the Fisher information matrix, which characterizes which directions in the weight space are most influential on the predictions over the training data. Online, we estimate uncertainty by measuring how much perturbations orthogonal to these directions can alter predictions at a new test input. We apply SCOD to pre-trained networks of varying architectures on several tasks, ranging from regression to classification. We demonstrate that SCOD achieves comparable or better OoD detection performance with lower computational burden relative to existing baselines.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com