Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topology Learning Aided False Data Injection Attack without Prior Topology Information (2102.12248v1)

Published 24 Feb 2021 in eess.SY and cs.SY

Abstract: False Data Injection (FDI) attacks against powersystem state estimation are a growing concern for operators.Previously, most works on FDI attacks have been performedunder the assumption of the attacker having full knowledge ofthe underlying system without clear justification. In this paper, wedevelop a topology-learning-aided FDI attack that allows stealthycyber-attacks against AC power system state estimation withoutprior knowledge of system information. The attack combinestopology learning technique, based only on branch and bus powerflows, and attacker-side pseudo-residual assessment to performstealthy FDI attacks with high confidence. This paper, for thefirst time, demonstrates how quickly the attacker can developfull-knowledge of the grid topology and parameters and validatesthe full knowledge assumptions in the previous work.

Citations (6)

Summary

We haven't generated a summary for this paper yet.