Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Shift Attention for Motion Generation (2102.12141v1)

Published 24 Feb 2021 in cs.RO and cs.AI

Abstract: One challenge of motion generation using robot learning from demonstration techniques is that human demonstrations follow a distribution with multiple modes for one task query. Previous approaches fail to capture all modes or tend to average modes of the demonstrations and thus generate invalid trajectories. The other difficulty is the small number of demonstrations that cannot cover the entire working space. To overcome this problem, a motion generation model with extrapolation ability is needed. Previous works restrict task queries as local frames and learn representations in local frames. We propose a model to solve both problems. For multiple modes, we suggest to learn local latent representations of motion trajectories with a density estimation method based on real-valued non-volume preserving (RealNVP) transformations that provides a set of powerful, stably invertible, and learnable transformations. To improve the extrapolation ability, we propose to shift the attention of the robot from one local frame to another during the task execution. In experiments, we consider the docking problem used also in previous works where a trajectory has to be generated to connect two dockers without collision. We increase complexity of the task and show that the proposed method outperforms other approaches. In addition, we evaluate the approach in real robot experiments.

Summary

We haven't generated a summary for this paper yet.