Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SFANet: A Spectrum-aware Feature Augmentation Network for Visible-Infrared Person Re-Identification (2102.12137v1)

Published 24 Feb 2021 in cs.CV

Abstract: Visible-Infrared person re-identification (VI-ReID) is a challenging matching problem due to large modality varitions between visible and infrared images. Existing approaches usually bridge the modality gap with only feature-level constraints, ignoring pixel-level variations. Some methods employ GAN to generate style-consistent images, but it destroys the structure information and incurs a considerable level of noise. In this paper, we explicitly consider these challenges and formulate a novel spectrum-aware feature augementation network named SFANet for cross-modality matching problem. Specifically, we put forward to employ grayscale-spectrum images to fully replace RGB images for feature learning. Learning with the grayscale-spectrum images, our model can apparently reduce modality discrepancy and detect inner structure relations across the different modalities, making it robust to color variations. In feature-level, we improve the conventional two-stream network through balancing the number of specific and sharable convolutional blocks, which preserve the spatial structure information of features. Additionally, a bi-directional tri-constrained top-push ranking loss (BTTR) is embedded in the proposed network to improve the discriminability, which efficiently further boosts the matching accuracy. Meanwhile, we further introduce an effective dual-linear with batch normalization ID embedding method to model the identity-specific information and assits BTTR loss in magnitude stabilizing. On SYSU-MM01 and RegDB datasets, we conducted extensively experiments to demonstrate that our proposed framework contributes indispensably and achieves a very competitive VI-ReID performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Haojie Liu (20 papers)
  2. Shun Ma (1 paper)
  3. Daoxun Xia (2 papers)
  4. Shaozi Li (30 papers)
Citations (59)