Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
114 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
35 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Comparative evaluation of CNN architectures for Image Caption Generation (2102.11506v1)

Published 23 Feb 2021 in cs.CV, cs.AI, cs.LG, cs.MM, and cs.NE

Abstract: Aided by recent advances in Deep Learning, Image Caption Generation has seen tremendous progress over the last few years. Most methods use transfer learning to extract visual information, in the form of image features, with the help of pre-trained Convolutional Neural Network models followed by transformation of the visual information using a Caption Generator module to generate the output sentences. Different methods have used different Convolutional Neural Network Architectures and, to the best of our knowledge, there is no systematic study which compares the relative efficacy of different Convolutional Neural Network architectures for extracting the visual information. In this work, we have evaluated 17 different Convolutional Neural Networks on two popular Image Caption Generation frameworks: the first based on Neural Image Caption (NIC) generation model and the second based on Soft-Attention framework. We observe that model complexity of Convolutional Neural Network, as measured by number of parameters, and the accuracy of the model on Object Recognition task does not necessarily co-relate with its efficacy on feature extraction for Image Caption Generation task.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.