Doubly isogenous genus-2 curves with $D_4$-action
Abstract: We study the extent to which curves over finite fields are characterized by their zeta functions and the zeta functions of certain of their covers. Suppose C and C' are curves over a finite field K, with K-rational base points P and P', and let D and D' be the pullbacks (via the Abel-Jacobi map) of the multiplication-by-2 maps on their Jacobians. We say that (C,P) and (C',P') are doubly isogenous if Jac(C) and Jac(C') are isogenous over K and Jac(D) and Jac(D') are isogenous over K. For curves of genus 2 whose automorphism groups contain the dihedral group of order eight, we show that the number of pairs of doubly isogenous curves is larger than naive heuristics predict, and we provide an explanation for this phenomenon.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.