Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cut Locus Realizations on Convex Polyhedra (2102.11097v1)

Published 22 Feb 2021 in cs.CG and math.MG

Abstract: We prove that every positively-weighted tree T can be realized as the cut locus C(x) of a point x on a convex polyhedron P, with T weights matching C(x) lengths. If T has n leaves, P has (in general) n+1 vertices. We show there are in fact a continuum of polyhedra P each realizing T for some x on P. Three main tools in the proof are properties of the star unfolding of P, Alexandrov's gluing theorem, and a cut-locus partition lemma. The construction of P from T is surprisingly simple.

Citations (3)

Summary

We haven't generated a summary for this paper yet.