Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting Classification Perspective on Scene Text Recognition (2102.10884v3)

Published 22 Feb 2021 in cs.CV

Abstract: The prevalent perspectives of scene text recognition are from sequence to sequence (seq2seq) and segmentation. Nevertheless, the former is composed of many components which makes implementation and deployment complicated, while the latter requires character level annotations that is expensive. In this paper, we revisit classification perspective that models scene text recognition as an image classification problem. Classification perspective has a simple pipeline and only needs word level annotations. We revive classification perspective by devising a scene text recognition model named as CSTR, which performs as well as methods from other perspectives. The CSTR model consists of CPNet (classification perspective network) and SPPN (separated conv with global average pooling prediction network). CSTR is as simple as image classification model like ResNet \cite{he2016deep} which makes it easy to implement and deploy. We demonstrate the effectiveness of the classification perspective on scene text recognition with extensive experiments. Futhermore, CSTR achieves nearly state-of-the-art performance on six public benchmarks including regular text, irregular text. The code will be available at https://github.com/Media-Smart/vedastr.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hongxiang Cai (6 papers)
  2. Jun Sun (210 papers)
  3. Yichao Xiong (7 papers)
Citations (10)