Papers
Topics
Authors
Recent
Search
2000 character limit reached

Provably Improved Context-Based Offline Meta-RL with Attention and Contrastive Learning

Published 22 Feb 2021 in cs.LG and cs.AI | (2102.10774v2)

Abstract: Meta-learning for offline reinforcement learning (OMRL) is an understudied problem with tremendous potential impact by enabling RL algorithms in many real-world applications. A popular solution to the problem is to infer task identity as augmented state using a context-based encoder, for which efficient learning of robust task representations remains an open challenge. In this work, we provably improve upon one of the SOTA OMRL algorithms, FOCAL, by incorporating intra-task attention mechanism and inter-task contrastive learning objectives, to robustify task representation learning against sparse reward and distribution shift. Theoretical analysis and experiments are presented to demonstrate the superior performance and robustness of our end-to-end and model-free framework compared to prior algorithms across multiple meta-RL benchmarks.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.