Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ALTO: Adaptive Linearized Storage of Sparse Tensors (2102.10245v2)

Published 20 Feb 2021 in cs.DC, cs.DS, and cs.PF

Abstract: The analysis of high-dimensional sparse data is becoming increasingly popular in many important domains. However, real-world sparse tensors are challenging to process due to their irregular shapes and data distributions. We propose the Adaptive Linearized Tensor Order (ALTO) format, a novel mode-agnostic (general) representation that keeps neighboring nonzero elements in the multi-dimensional space close to each other in memory. To generate the indexing metadata, ALTO uses an adaptive bit encoding scheme that trades off index computations for lower memory usage and more effective use of memory bandwidth. Moreover, by decoupling its sparse representation from the irregular spatial distribution of nonzero elements, ALTO eliminates the workload imbalance and greatly reduces the synchronization overhead of tensor computations. As a result, the parallel performance of ALTO-based tensor operations becomes a function of their inherent data reuse. On a gamut of tensor datasets, ALTO outperforms an oracle that selects the best state-of-the-art format for each dataset, when used in key tensor decomposition operations. Specifically, ALTO achieves a geometric mean speedup of 8X over the best mode-agnostic (coordinate and hierarchical coordinate) formats, while delivering a geometric mean compression ratio of 4.3X relative to the best mode-specific (compressed sparse fiber) formats.

Citations (20)

Summary

We haven't generated a summary for this paper yet.