Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-to-End Neural Systems for Automatic Children Speech Recognition: An Empirical Study (2102.09918v1)

Published 19 Feb 2021 in eess.AS and cs.SD

Abstract: A key desiderata for inclusive and accessible speech recognition technology is ensuring its robust performance to children's speech. Notably, this includes the rapidly advancing neural network based end-to-end speech recognition systems. Children speech recognition is more challenging due to the larger intra-inter speaker variability in terms of acoustic and linguistic characteristics compared to adult speech. Furthermore, the lack of adequate and appropriate children speech resources adds to the challenge of designing robust end-to-end neural architectures. This study provides a critical assessment of automatic children speech recognition through an empirical study of contemporary state-of-the-art end-to-end speech recognition systems. Insights are provided on the aspects of training data requirements, adaptation on children data, and the effect of children age, utterance lengths, different architectures and loss functions for end-to-end systems and role of LLMs on the speech recognition performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (44)

Summary

We haven't generated a summary for this paper yet.