Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A GAN-Based Input-Size Flexibility Model for Single Image Dehazing (2102.09796v2)

Published 19 Feb 2021 in eess.IV and cs.CV

Abstract: Image-to-image translation based on generative adversarial network (GAN) has achieved state-of-the-art performance in various image restoration applications. Single image dehazing is a typical example, which aims to obtain the haze-free image of a haze one. This paper concentrates on the challenging task of single image dehazing. Based on the atmospheric scattering model, a novel model is designed to directly generate the haze-free image. The main challenge of image dehazing is that the atmospheric scattering model has two parameters, i.e., transmission map and atmospheric light. When they are estimated respectively, the errors will be accumulated to compromise the dehazing quality. Considering this reason and various image sizes, a novel input-size flexibility conditional generative adversarial network (cGAN) is proposed for single image dehazing, which is input-size flexibility at both training and test stages for image-to-image translation with cGAN framework. A simple and effective U-connection residual network (UR-Net) is proposed to combine the generator and adopt the spatial pyramid pooling (SPP) to design the discriminator. Moreover, the model is trained with multi-loss function, in which the consistency loss is a novel designed loss in this paper. Finally, a multi-scale cGAN fusion model is built to realize state-of-the-art single image dehazing performance. The proposed models receive a haze image as input and directly output a haze-free one. Experimental results demonstrate the effectiveness and efficiency of the proposed models.

Citations (9)

Summary

We haven't generated a summary for this paper yet.