Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recovering orthogonal tensors under arbitrarily strong, but locally correlated, noise (2102.09661v1)

Published 18 Feb 2021 in math.NA and cs.NA

Abstract: We consider the problem of recovering an orthogonally decomposable tensor with a subset of elements distorted by noise with arbitrarily large magnitude. We focus on the particular case where each mode in the decomposition is corrupted by noise vectors with components that are correlated locally, i.e., with nearby components. We show that this deterministic tensor completion problem has the unusual property that it can be solved in polynomial time if the rank of the tensor is sufficiently large. This is the polar opposite of the low-rank assumptions of typical low-rank tensor and matrix completion settings. We show that our problem can be solved through a system of coupled Sylvester-like equations and show how to accelerate their solution by an alternating solver. This enables recovery even with a substantial number of missing entries, for instance for $n$-dimensional tensors of rank $n$ with up to $40\%$ missing entries.

Summary

We haven't generated a summary for this paper yet.