Higgs fields, non-abelian Cauchy kernels and the Goldman symplectic structure (2102.09520v3)
Abstract: We consider the moduli space of vector bundles of rank $n$ and degree $ng$ over a fixed Riemann surface of genus $g\geq 2$. We use the explicit parametrization in terms of the Tyurin data. In the moduli space there is a "non-abelian" Theta divisor, consisting of bundles with $h1\geq 1$. On the complement of this divisor we construct a non-abelian Cauchy kernel explicitly in terms of the Tyurin data. With the additional datum of a non-special divisor, we can construct a reference flat holomorphic connection which is also dependent holomorphically on the moduli of the bundle. This allows us to identify the bundle of Higgs fields, i.e. the cotangent bundle of the moduli space, with the affine bundle of holomorphic connections and provide a monodromy map into the ${\rm GL}_n$ character variety. We show that the Goldman symplectic structure on the character variety pulls back along this map to the complex canonical symplectic structure on the cotangent bundle and hence also on the space of affine connections. The pull-back of the Liouville one-form to the affine bundle of connections is then shown to be a logarithmic form with poles along the non-abelian theta divisor and residue given by $h1$.
- A.Yu. Alekseev, A.Z. Malkin. “Symplectic structure of the moduli space of flat connection[s] on a Riemann surface”. Comm. Math. Phys. 169 (1995), no. 1, 99–119.
- H. Behnke, K. Stein. “Entwicklung analytischer Funktionen auf Riemannschen Flächen”. Math. Ann. 120 (1949), 430–461.
- M. Bertola. “The dependence on the monodromy data of the isomonodromic tau function”. Comm. Math. Phys. 294 (2010), no. 2, 539–579.
- M. Bertola. “Correction to: The dependence on the monodromy data of the isomonodromic tau function”. Comm. Math. Phys. 381 (2021), no. 3, 1445–1461.
- “Symplectic geometry of the moduli space of projective structures in homological coordinates”. Invent. Math. 210 (2017), no. 3, 759–814.
- M. Bertola, D. Korotkin. “Extended Goldman symplectic structure in Fock–Goncharov coordinates”. J. Differential Geom. 124 (2023), no. 3, 397–442.
- G. Daskalopoulos, R.A. Wentworth. “Local degeneration of the moduli space of vector bundles and factorization of rank two theta functions. I”. Math. Ann. 297 (1993), no. 3, 417–466.
- S.K. Donaldson. “A new proof of a theorem of Narasimhan and Seshadri”. J. Differential Geom. 18 (1983), no. 2, 269–277.
- B. Enriquez, V. Rubtsov. “Hecke-Tyurin parametrization of the Hitchin and KZB systems”. Moscow Seminar on Mathematical Physics. II, 1–31, Amer. Math. Soc. Transl. Ser. 2, 221, Adv. Math. Sci., 60, Amer. Math. Soc., Providence, RI, 2007.
- “Complex Chern–Simons bundles in the relative setting”. Preprint arXiv:2109.02033 (2021)
- J.D. Fay. “Theta functions on Riemann surfaces”. Lecture Notes in Mathematics, Vol. 352. Springer-Verlag, Berlin-New York, 1973.
- J.D. Fay “The nonabelian Szegö kernel and theta-divisor”. Curves, Jacobians, and abelian varieties (Amherst, MA, 1990), 171–183, Contemp. Math., 136, Amer. Math. Soc., Providence, RI, 1992.
- J.D. Fay. “Kernel functions, analytic torsion, and moduli spaces”. Mem. Amer. Math. Soc. 96 (1992), no. 464.
- O. Forster. “Lectures on Riemann surfaces”. Graduate Texts in Mathematics, 81, Springer-Verlag, New York, 1991.
- F.D. Gakhov. “Boundary value problems”. Translated from the Russian. Reprint of the 1966 translation. Dover Publications, Inc., New York, 1990.
- F.R. Gantmacher. “The theory of matrices. Vol. 1”. Translated from the Russian by K. A. Hirsch. Reprint of the 1959 translation. AMS Chelsea Publishing, Providence, RI, 1998.
- W. Goldman. “The symplectic nature of fundamental groups of surfaces”. Adv. in Math. 54 (1984), no. 2, 200–225.
- R.C. Gunning. “Lectures on vector bundles over Riemann surfaces”. University of Tokyo Press, Tokyo; Princeton University Press, Princeton, N.J. 1967.
- S.Ja. Gusman, Ju.L. Rodin. “The kernel of an integral of Cauchy type on closed Riemann surfaces”. Sibirsk. Mat. Ž. 3 1962 527–531.
- R. Hartshorne. “Algebraic geometry”. Grad. Texts in Math., No. 52. Springer-Verlag, New York-Heidelberg, 1977.
- S. Kawai. “The symplectic nature of the space of projective connections on Riemann surfaces”. Math. Ann. 305 (1996), no. 1, 161–182.
- I. Krichever. “Vector bundles and Lax equations on algebraic curves”. Comm. Math. Phys. 229 (2002), no. 2, 229–269.
- I. Krichever. “Isomonodromy equations on algebraic curves, canonical transformations and Whitham equations”. Mosc. Math. J. 2 (2002), no. 4, 717–752, 806.
- M.S. Narasimhan, C.S. Seshadri. “Stable and unitary vector bundles on a compact Riemann surface”. Ann. of Math. (2) 82 (1965), 540–567.
- D. Quillen. “Determinants of Cauchy-Riemann operators on Riemann surfaces”. Funktsional. Anal. i Prilozhen. 19 (1985), no. 1, 37–41, 96. English translation: Functional Anal. Appl. 19 (1985), no. 1, 31–34.
- Yu.L. Rodin. “The Riemann boundary problem on Riemann surfaces”. Mathematics and its Applications (Soviet Series), 16. D. Reidel Publishing Co., Dordrecht, 1988.
- L.A. Takhtajan. “On Kawai theorem for orbifold Riemann surfaces.” Math. Ann. 375, 923–947 (2019).
- L.A. Takhtajan. “Goldman form, flat connections and stable vector bundles”. Enseign. Math. 68 (2022), no. 3, pp. 409–440
- A.N. Tyurin. “The classification of vector bundles over an algebraic curve of arbitrary genus”. Izv. Akad. Nauk SSSR Ser. Mat. 29 1965 657–688. English translation: Amer. Math. Soc. Transl. Ser. 2, Vol. 63, 245–279 (1967).
- A.N. Tyurin. “Classification of n𝑛nitalic_n-dimensional vector bundles over an algebraic curve of arbitrary genus”. Izv. Akad. Nauk SSSR Ser. Mat. 30 1966 1353–1366. English translation: Amer. Math. Soc. Transl. Ser. 2, Vol. 73, 196–211 (1968)
- È.I. Zverovič. “Boundary value problems in the theory of analytic functions in Hölder classes on Riemann surfaces”. Uspehi Mat. Nauk 26 (1971), no. 1(157), 113–179. English translation: Russian Math. Surveys26 (1971), no. 1, 117–192.