Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of stochastic gradient descent schemes for Lojasiewicz-landscapes (2102.09385v3)

Published 16 Feb 2021 in cs.LG, math.PR, math.ST, and stat.TH

Abstract: In this article, we consider convergence of stochastic gradient descent schemes (SGD), including momentum stochastic gradient descent (MSGD), under weak assumptions on the underlying landscape. More explicitly, we show that on the event that the SGD stays bounded we have convergence of the SGD if there is only a countable number of critical points or if the objective function satisfies Lojasiewicz-inequalities around all critical levels as all analytic functions do. In particular, we show that for neural networks with analytic activation function such as softplus, sigmoid and the hyperbolic tangent, SGD converges on the event of staying bounded, if the random variables modelling the signal and response in the training are compactly supported.

Citations (22)

Summary

We haven't generated a summary for this paper yet.