Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A maximum entropy model of bounded rational decision-making with prior beliefs and market feedback (2102.09180v3)

Published 18 Feb 2021 in cs.IT, cs.AI, econ.TH, math.IT, physics.soc-ph, and q-fin.CP

Abstract: Bounded rationality is an important consideration stemming from the fact that agents often have limits on their processing abilities, making the assumption of perfect rationality inapplicable to many real tasks. We propose an information-theoretic approach to the inference of agent decisions under Smithian competition. The model explicitly captures the boundedness of agents (limited in their information-processing capacity) as the cost of information acquisition for expanding their prior beliefs. The expansion is measured as the Kullblack-Leibler divergence between posterior decisions and prior beliefs. When information acquisition is free, the homo economicus agent is recovered, while in cases when information acquisition becomes costly, agents instead revert to their prior beliefs. The maximum entropy principle is used to infer least-biased decisions based upon the notion of Smithian competition formalised within the Quantal Response Statistical Equilibrium framework. The incorporation of prior beliefs into such a framework allowed us to systematically explore the effects of prior beliefs on decision-making in the presence of market feedback, as well as importantly adding a temporal interpretation to the framework. We verified the proposed model using Australian housing market data, showing how the incorporation of prior knowledge alters the resulting agent decisions. Specifically, it allowed for the separation of past beliefs and utility maximisation behaviour of the agent as well as the analysis into the evolution of agent beliefs.

Citations (15)

Summary

We haven't generated a summary for this paper yet.