Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Doubly Robust Estimator from Non-stationary Logging Policy under a Convergence of Average Probability (2102.08975v2)

Published 17 Feb 2021 in stat.ME, cs.LG, and econ.EM

Abstract: Adaptive experiments, including efficient average treatment effect estimation and multi-armed bandit algorithms, have garnered attention in various applications, such as social experiments, clinical trials, and online advertisement optimization. This paper considers estimating the mean outcome of an action from samples obtained in adaptive experiments. In causal inference, the mean outcome of an action has a crucial role, and the estimation is an essential task, where the average treatment effect estimation and off-policy value estimation are its variants. In adaptive experiments, the probability of choosing an action (logging policy) is allowed to be sequentially updated based on past observations. Due to this logging policy depending on the past observations, the samples are often not independent and identically distributed (i.i.d.), making developing an asymptotically normal estimator difficult. A typical approach for this problem is to assume that the logging policy converges in a time-invariant function. However, this assumption is restrictive in various applications, such as when the logging policy fluctuates or becomes zero at some periods. To mitigate this limitation, we propose another assumption that the average logging policy converges to a time-invariant function and show the doubly robust (DR) estimator's asymptotic normality. Under the assumption, the logging policy itself can fluctuate or be zero for some actions. We also show the empirical properties by simulations.

Summary

We haven't generated a summary for this paper yet.