Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Conditional Variance Estimator for Sufficient Dimension Reduction (2102.08782v1)

Published 17 Feb 2021 in stat.ME, math.ST, and stat.TH

Abstract: Conditional Variance Estimation (CVE) is a novel sufficient dimension reduction (SDR) method for additive error regressions with continuous predictors and link function. It operates under the assumption that the predictors can be replaced by a lower dimensional projection without loss of information. In contrast to the majority of moment based sufficient dimension reduction methods, Conditional Variance Estimation is fully data driven, does not require the restrictive linearity and constant variance conditions, and is not based on inverse regression. CVE is shown to be consistent and its objective function to be uniformly convergent. CVE outperforms the mean average variance estimation, (MAVE), its main competitor, in several simulation settings, remains on par under others, while it always outperforms the usual inverse regression based linear SDR methods, such as Sliced Inverse Regression.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.