Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Regret Analysis of Bilateral Trade (2102.08754v1)

Published 16 Feb 2021 in cs.LG, econ.TH, and stat.ML

Abstract: Bilateral trade, a fundamental topic in economics, models the problem of intermediating between two strategic agents, a seller and a buyer, willing to trade a good for which they hold private valuations. Despite the simplicity of this problem, a classical result by Myerson and Satterthwaite (1983) affirms the impossibility of designing a mechanism which is simultaneously efficient, incentive compatible, individually rational, and budget balanced. This impossibility result fostered an intense investigation of meaningful trade-offs between these desired properties. Much work has focused on approximately efficient fixed-price mechanisms, i.e., Blumrosen and Dobzinski (2014; 2016), Colini-Baldeschi et al. (2016), which have been shown to fully characterize strong budget balanced and ex-post individually rational direct revelation mechanisms. All these results, however, either assume some knowledge on the priors of the seller/buyer valuations, or a black box access to some samples of the distributions, as in D{\"u}tting et al. (2021). In this paper, we cast for the first time the bilateral trade problem in a regret minimization framework over rounds of seller/buyer interactions, with no prior knowledge on the private seller/buyer valuations. Our main contribution is a complete characterization of the regret regimes for fixed-price mechanisms with different models of feedback and private valuations, using as benchmark the best fixed price in hindsight. More precisely, we prove the following bounds on the regret: $\bullet$ $\widetilde{\Theta}(\sqrt{T})$ for full-feedback (i.e., direct revelation mechanisms); $\bullet$ $\widetilde{\Theta}(T{2/3})$ for realistic feedback (i.e., posted-price mechanisms) and independent seller/buyer valuations with bounded densities; $\bullet$ $\Theta(T)$ for realistic feedback and seller/buyer valuations with bounded densities; $\bullet$ $\Theta(T)$ for realistic feedback and independent seller/buyer valuations; $\bullet$ $\Theta(T)$ for the adversarial setting.

Citations (18)

Summary

We haven't generated a summary for this paper yet.