2000 character limit reached
Maximal dimension of groups of symmetries of homogeneous 2-nondegenerate CR structures of hypersurface type with a 1-dimensional Levi kernel
Published 17 Feb 2021 in math.CV and math.DG | (2102.08599v3)
Abstract: We prove that for every $n\geq 3$ the sharp upper bound for the dimension of the symmetry groups of homogeneous, 2-nondegenerate, $(2n+1)$-dimensional CR manifolds of hypersurface type with a $1$-dimensional Levi kernel is equal to $n2+7$, and simultaneously establish the same result for a more general class of structures characterized by weakening the homogeneity condition. This supports Beloshapka's conjecture stating that hypersurface models with a maximal finite dimensional group of symmetries for a given dimension of the underlying manifold are Levi nondegenerate.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.