Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zero-Shot Adaptation for mmWave Beam-Tracking on Overhead Messenger Wires through Robust Adversarial Reinforcement Learning (2102.08055v2)

Published 16 Feb 2021 in cs.LG and cs.NI

Abstract: Millimeter wave (mmWave) beam-tracking based on machine learning enables the development of accurate tracking policies while obviating the need to periodically solve beam-optimization problems. However, its applicability is still arguable when training-test gaps exist in terms of environmental parameters that affect the node dynamics. From this skeptical point of view, the contribution of this study is twofold. First, by considering an example scenario, we confirm that the training-test gap adversely affects the beam-tracking performance. More specifically, we consider nodes placed on overhead messenger wires, where the node dynamics are affected by several environmental parameters, e.g, the wire mass and tension. Although these are particular scenarios, they yield insight into the validation of the training-test gap problems. Second, we demonstrate the feasibility of \textit{zero-shot adaptation} as a solution, where a learning agent adapts to environmental parameters unseen during training. This is achieved by leveraging a robust adversarial reinforcement learning (RARL) technique, where such training-and-test gaps are regarded as disturbances by adversaries that are jointly trained with a legitimate beam-tracking agent. Numerical evaluations demonstrate that the beam-tracking policy learned via RARL can be applied to a wide range of environmental parameters without severely degrading the received power.

Citations (6)

Summary

We haven't generated a summary for this paper yet.