Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Sub-band Approach to Deep Denoising Wavelet Networks and a Frequency-adaptive Loss for Perceptual Quality (2102.07973v1)

Published 16 Feb 2021 in cs.LG and cs.CV

Abstract: In this paper, we propose two contributions to neural network based denoising. First, we propose applying separate convolutional layers to each sub-band of discrete wavelet transform (DWT) as opposed to the common usage of DWT which concatenates all sub-bands and applies a single convolution layer. We show that our approach to using DWT in neural networks improves the accuracy notably, due to keeping the sub-band order uncorrupted prior to inverse DWT. Our second contribution is a denoising loss based on top k-percent of errors in frequency domain. A neural network trained with this loss, adaptively focuses on frequencies that it fails to recover the most in each iteration. We show that this loss results into better perceptual quality by providing an image that is more balanced in terms of the errors in frequency components.

Citations (3)

Summary

We haven't generated a summary for this paper yet.