Papers
Topics
Authors
Recent
2000 character limit reached

Self-Organizing Teams in Online Work Settings

Published 15 Feb 2021 in cs.HC | (2102.07421v1)

Abstract: As the volume and complexity of distributed online work increases, the collaboration among people who have never worked together in the past is becoming increasingly necessary. Recent research has proposed algorithms to maximize the performance of such teams by grouping workers according to a set of predefined decision criteria. This approach micro-manages workers, who have no say in the team formation process. Depriving users of control over who they will work with stifles creativity, causes psychological discomfort and results in less-than-optimal collaboration results. In this work, we propose an alternative model, called Self-Organizing Teams (SOTs), which relies on the crowd of online workers itself to organize into effective teams. Supported but not guided by an algorithm, SOTs are a new human-centered computational structure, which enables participants to control, correct and guide the output of their collaboration as a collective. Experimental results, comparing SOTs to two benchmarks that do not offer user agency over the collaboration, reveal that participants in the SOTs condition produce results of higher quality and report higher teamwork satisfaction. We also find that, similarly to machine learning-based self-organization, human SOTs exhibit emergent collective properties, including the presence of an objective function and the tendency to form more distinct clusters of compatible teammates.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.