Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Attention Guided Dynamic Value Estimation for Single-Task Multi-Scene Reinforcement Learning (2102.07266v1)

Published 14 Feb 2021 in cs.LG, cs.AI, cs.RO, and stat.ML

Abstract: Training deep reinforcement learning agents on environments with multiple levels / scenes from the same task, has become essential for many applications aiming to achieve generalization and domain transfer from simulation to the real world. While such a strategy is helpful with generalization, the use of multiple scenes significantly increases the variance of samples collected for policy gradient computations. Current methods, effectively continue to view this collection of scenes as a single Markov decision process (MDP), and thus learn a scene-generic value function V(s). However, we argue that the sample variance for a multi-scene environment is best minimized by treating each scene as a distinct MDP, and then learning a joint value function V(s,M) dependent on both state s and MDP M. We further demonstrate that the true joint value function for a multi-scene environment, follows a multi-modal distribution which is not captured by traditional CNN / LSTM based critic networks. To this end, we propose a dynamic value estimation (DVE) technique, which approximates the true joint value function through a sparse attention mechanism over multiple value function hypothesis / modes. The resulting agent not only shows significant improvements in the final reward score across a range of OpenAI ProcGen environments, but also exhibits enhanced navigation efficiency and provides an implicit mechanism for unsupervised state-space skill decomposition.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jaskirat Singh (25 papers)
  2. Liang Zheng (181 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.