Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Attack on Network Embeddings via Supervised Network Poisoning (2102.07164v1)

Published 14 Feb 2021 in cs.LG and cs.CR

Abstract: Learning low-level node embeddings using techniques from network representation learning is useful for solving downstream tasks such as node classification and link prediction. An important consideration in such applications is the robustness of the embedding algorithms against adversarial attacks, which can be examined by performing perturbation on the original network. An efficient perturbation technique can degrade the performance of network embeddings on downstream tasks. In this paper, we study network embedding algorithms from an adversarial point of view and observe the effect of poisoning the network on downstream tasks. We propose VIKING, a supervised network poisoning strategy that outperforms the state-of-the-art poisoning methods by upto 18% on the original network structure. We also extend VIKING to a semi-supervised attack setting and show that it is comparable to its supervised counterpart.

Citations (12)

Summary

We haven't generated a summary for this paper yet.