Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing WiFi Multiple Access Performance with Federated Deep Reinforcement Learning (2102.07019v1)

Published 13 Feb 2021 in cs.NI

Abstract: Carrier sensing multiple access/collision avoidance (CSMA/CA) is the backbone MAC protocol for IEEE 802.11 networks. However, tuning the binary exponential back-off (BEB) mechanism of CSMA/CA in user-dense scenarios so as to maximize aggregate throughput still remains a practically essential and challenging problem. In this paper, we propose a new and enhanced multiple access mechanism based on the application of deep reinforcement learning (DRL) and Federated learning (FL). A new Monte Carlo (MC) reward updating method for DRL training is proposed and the access history of each station is used to derive a DRL-based MAC protocol that improves the network throughput vis-a-vis the traditional distributed coordination function (DCF). Further, federated learning (FL) is applied to achieve fairness among users. The simulation results showcase that the proposed federated reinforcement multiple access (FRMA) performs better than basic DCF by 20% and DCF with request-to-send/clear-to-send (RTS/CTS) by 5% while guaranteeing the fairness in user-dense scenarios.

Citations (27)

Summary

We haven't generated a summary for this paper yet.