Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Bio-Inspired Texture Descriptor based on Biodiversity and Taxonomic Measures (2102.06997v3)

Published 13 Feb 2021 in cs.CV

Abstract: Texture can be defined as the change of image intensity that forms repetitive patterns, resulting from physical properties of the object's roughness or differences in a reflection on the surface. Considering that texture forms a complex system of patterns in a non-deterministic way, biodiversity concepts can help texture characterization in images. This paper proposes a novel approach capable of quantifying such a complex system of diverse patterns through species diversity and richness and taxonomic distinctiveness. The proposed approach considers each image channel as a species ecosystem and computes species diversity and richness measures as well as taxonomic measures to describe the texture. The proposed approach takes advantage of ecological patterns' invariance characteristics to build a permutation, rotation, and translation invariant descriptor. Experimental results on three datasets of natural texture images and two datasets of histopathological images have shown that the proposed texture descriptor has advantages over several texture descriptors and deep methods.

Citations (10)

Summary

We haven't generated a summary for this paper yet.