Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Traveling Repairperson, Unrelated Machines, and Other Stories About Average Completion Times (2102.06904v2)

Published 13 Feb 2021 in cs.DS

Abstract: We present a unified framework for minimizing average completion time for many seemingly disparate online scheduling problems, such as the traveling repairperson problems (TRP), dial-a-ride problems (DARP), and scheduling on unrelated machines. We construct a simple algorithm that handles all these scheduling problems, by computing and later executing auxiliary schedules, each optimizing a certain function on already seen prefix of the input. The optimized function resembles a prize-collecting variant of the original scheduling problem. By a careful analysis of the interplay between these auxiliary schedules, and later employing the resulting inequalities in a factor-revealing linear program, we obtain improved bounds on the competitive ratio for all these scheduling problems. In particular, our techniques yield a $4$-competitive deterministic algorithm for all previously studied variants of online TRP and DARP, and a $3$-competitive one for the scheduling on unrelated machines (also with precedence constraints). This improves over currently best ratios for these problems that are $5.14$ and $4$, respectively. We also show how to use randomization to further reduce the competitive ratios to $1+2/\ln 3 < 2.821$ and $1+1/\ln 2 < 2.443$, respectively. The randomized bounds also substantially improve the current state of the art. Our upper bound for DARP contradicts the lower bound of 3 given by Fink et al. (Inf. Process. Lett. 2009); we pinpoint a flaw in their proof.

Citations (16)

Summary

We haven't generated a summary for this paper yet.