Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Empirical performance bounds for quantum approximate optimization (2102.06813v1)

Published 12 Feb 2021 in quant-ph and physics.comp-ph

Abstract: The quantum approximate optimization algorithm (QAOA) is a variational method for noisy, intermediate-scale quantum computers to solve combinatorial optimization problems. Quantifying performance bounds with respect to specific problem instances provides insight into when QAOA may be viable for solving real-world applications. Here, we solve every instance of MaxCut on non-isomorphic unweighted graphs with nine or fewer vertices by numerically simulating the pure-state dynamics of QAOA. Testing up to three layers of QAOA depth, we find that distributions of the approximation ratio narrow with increasing depth while the probability of recovering the maximum cut generally broadens. We find QAOA exceeds the Goemans-Williamson approximation ratio bound for most graphs. We also identify consistent patterns within the ensemble of optimized variational circuit parameters that offer highly efficient heuristics for solving MaxCut with QAOA. The resulting data set is presented as a benchmark for establishing empirical bounds on QAOA performance that may be used to test on-going experimental realizations.

Citations (48)

Summary

We haven't generated a summary for this paper yet.