Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computations of the Comodule Structures of the Chow rings of Flag Varieties (2102.06672v1)

Published 12 Feb 2021 in math.AG and math.AT

Abstract: Let $G$ be a connected reductive group, and $G/B$ be its flag variety. Let $\pi:G\to G/B$ be the natural projection. In this paper, we developed an algorithm to describe the map $\pi* :\operatorname{CH}*(G/B;\mathbb{F}_p)\longrightarrow \operatorname{CH}*(G;\mathbb{F}_p)$ in terms of Schubert cells. Taking advantage of the Pieri rule, we give an explicit formula for $A$-type, $C$-type, $G_2$, $F_4$ of the cohomology map $\pi* :\operatorname{CH}*(G/B;\mathbb{F}_p)\longrightarrow \operatorname{CH}*(G;\mathbb{F}_p)$, and some partial result of $\pi*$ is given for $E_6$ and $E_7$. Denote the group action map $\mu:G\times G/B\to G/B$, we also give an explicit formula for $A$-type, $C$-type, $G_2$, $F_4$ of the cohomology map $\mu*: \operatorname{CH}*(G/B;\mathbb{F}_p)\longrightarrow \operatorname{CH}*(G\times G/B;\mathbb{F}_p)$.

Summary

We haven't generated a summary for this paper yet.