Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust and integrative Bayesian neural networks for likelihood-free parameter inference (2102.06521v2)

Published 12 Feb 2021 in stat.ML, cs.LG, and q-bio.QM

Abstract: State-of-the-art neural network-based methods for learning summary statistics have delivered promising results for simulation-based likelihood-free parameter inference. Existing approaches require density estimation as a post-processing step building upon deterministic neural networks, and do not take network prediction uncertainty into account. This work proposes a robust integrated approach that learns summary statistics using Bayesian neural networks, and directly estimates the posterior density using categorical distributions. An adaptive sampling scheme selects simulation locations to efficiently and iteratively refine the predictive posterior of the network conditioned on observations. This allows for more efficient and robust convergence on comparatively large prior spaces. We demonstrate our approach on benchmark examples and compare against related methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.